学霸强推,高中数学万能解题方法,对数学一筹莫展的你必看!

2018-03-27 21:11 评论

数学不好怎么办,你有多头疼数学成绩?你还担心自己学不好数学吗?其实只要掌握学习的方法,数学就能迅速提升。


今天,小编整理了一份学霸们强推的数学解题方法,对大家肯定有帮助,数学不好的一定要看!


本文适合高中数学成绩不理想,想迅速提升的同学,主要讲高中数学解题方法、答题思路,平时考试都适用。

1

解决绝对值问题

主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。


具体转化方法有:

①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

②零点分段讨论法:适用于含一个字母的多个绝对值的情况。

③两边平方法:适用于两边非负的方程或不等式。

④几何意义法:适用于有明显几何意义的情况。

2

因式分解

根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:

提取公因式

选择用公式

十字相乘法

分组分解法

拆项添项法

3

配方法

利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有:

50.jpg

4

换元法

解某些复杂的特型方程要用到“换元法”。换元法解方程的一般步骤是:

设元→换元→解元→还元

5

待定系数法

待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。其解题步骤是:①设 ②列 ③解 ④写

6

复杂代数等式

复杂代数等式型条件的使用技巧:左边化零,右边变形。

①因式分解型:

(-----)(----)=0     两种情况为或型

②配成平方型:

(----)2+(----)2=0   两种情况为且型

7

数学中两个最伟大的解题思路

(1)求值的思路列欲求值字母的方程或方程组

(2)求取值范围的思路列欲求范围字母的不等式或不等式组

8

化简二次根式

基本思路是:把√m化成完全平方式。即:

51.jpg

9

观察法

52.jpg

10

代数式求值

方法有:

(1)直接代入法

(2)化简代入法

(3)适当变形法(和积代入法)

注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。

11

解含参方程

方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。解含参方程一般要用‘分类讨论法’,其原则是:

(1)按照类型求解

(2)根据需要讨论    

(3)分类写出结论

12

恒相等成立的有用条件

(1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。

(2)ax2+bx+c=0对于任意x都成立关于x的方程ax2+bx+c=0有无数解a=0、b=0、c=0。

13

恒不等成立的条件

由一元二次不等式解集为R的有关结论容易得到下列恒不等成立的条件:

14

平移规律

图像的平移规律是研究复杂函数的重要方法。平移规律是:

53.jpg

15

图像法

讨论函数性质的重要方法是图像法——看图像、得性质。

定义域 图像在X轴上对应的部分

值域 图像在Y轴上对应的部分

单调性从左向右看,连续上升的一段在X轴上对应的区间是增区间;从左向右看,连续下降的一段在X轴上对应的区间是减区间。

最值图像最高点处有最大值,图像最低点处有最小值

奇偶性 关于Y轴对称是偶函数,关于原点对称是奇函数

16

函数、方程、不等式间的重要关系

方程的根

函数图像与x轴交点横坐标

不等式解集端点

17

一元二次不等式的解法

一元二次不等式可以用因式分解转化为二元一次不等式组去解,但比较复杂;它的简便的实用解法是根据“三个二次”间的关系,利用二次函数的图像去解。具体步骤如下:

二次化为正

 ▼

判别且求根

 ▼

画出示意图

 ▼

解集横轴中

18

一元二次方程根的讨论

一元二次方程根的符号问题或m型问题可以利用根的判别式和根与系数的关系来解决,但根的一般问题、特别是区间根的问题要根据“三个二次”间的关系,利用二次函数的图像来解决。“图像法”解决一元二次方程根的问题的一般思路是:

题意

 ▼

二次函数图像

 ▼

不等式组

不等式组包括:a的符号;△的情况;对称轴的位置;区间端点函数值的符号。

19

基本函数在区间上的值域

我们学过的一次函数、反比例函数、二次函数等有名称的函数是基本函数。基本函数求值域或最值有两种情况:

(1)定义域没有特别限制时---记忆法或结论法;

(2)定义域有特别限制时---图像截断法,一般思路是:

画出图像

 ▼

截出一断

 ▼

得出结论

20

最值型应用题的解法

应用题中,涉及“一个变量取什么值时另一个变量取得最大值或最小值”的问题是最值型应用题。解决最值型应用题的基本思路是函数思想法,其解题步骤是:

设变量

 ▼

列函数

 ▼

求最值

 ▼

写结论

21

穿线法

穿线法是解高次不等式和分式不等式的最好方法。其一般思路是:

首项化正

 ▼

求根标根

 ▼

右上起穿

 ▼

奇穿偶回

注意:①高次不等式首先要用移项和因式分解的方法化为“左边乘积、右边是零”的形式。

②分式不等式一般不能用两边都乘去分母的方法来解,要通过移项、通分合并、因式分解的方法化为“商零式”,用穿线法解。


看完文章,大家有什么收获吗?数学学习并不难,关键大家要相信自己。


登录高考直通车APP
查看完整试题答案
好的
查看完整试题
特别声明:
1. 本站注明稿件来源为其他媒体的文/图等稿件均为转载稿,本站转载出于非商业性的教育和科研之目的,并不意味着赞同其观点或证实其内容的真实性。如转载稿涉及版权等问题,请作者在两周内速来电或来函联系,本站根据实际情况会进行下架处理。
2. 任何媒体、网站或个人未经本网协议授权不得转载、链接、转贴或以其他方式复制发表,违者本站将依法追究责任。
全部评论
努力加载中...
开通会员后可解锁剩余内容
立即开通
举报理由选择
确定
高考直通车官网

哇哦!快加入高考直通车APP,发现更多精彩内容,与学霸一起交流学习吧!